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Smart covering for a box-counting algorithm
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We describe a box-counting algorithm that does not use a grid to cover a multifractal set. It leads to better
results, especially in thg<0 region of the curve$(«) andD,. We present tests of this algorithm for the
attractor of the logistic map on the onset of chaos, for a binomial measure, and for the attractor afidhe He
map.[S1063-651X97)05104-0

PACS numbd(s): 02.70—c, 61.43.Hv, 05.45:b

Multifractal objects have been identified in many physicalmap on the onset of chaos, for a binomial measure, and for
situations[1], ranging from problems of aggregation to the the attractor of the Heon map.
behavior of chaotic dynamical systems. The multifractal sets This paper is divided as follows. In Sec. |, we present the
are usually characteriz¢@,3] by the generalized dimensions theoretical definitions associated with the problem. In Sec. II,
D, and the associated spectrum of singularifies). we describe the method to construct a better covering for a
In the actual calculations, we usually introduce a covering?0X-counting algorithm, and in Sec. Ill we present some re-
which consists of a collection of boxes that contain theSults obtained with this new method. In Sec. IV, we summa-
whole multifractal set, and associate a probabifiywith rize our'conclu_smns. In the Appendix the algorithm is de-
each box. The definition of the generalized dimensibgs scribed in detail.
and the spectrum of singulariti€fg«) are based on these
probabilities, which are supposed to be the integral of the ! DEFINITIONS OF THE MULTIFRACTAL THEORY
invariant measure inside the boxes. As the theoretical cover- 114 statistical properties of a multifractal set are charac-

ings are required to have some properties that are very diffigj;eq by the generalized dimensiddg and the associated
cult to achieve in practice, the expressionsipf andf(@)  gpectrum of singularitied(a). In the multifractal theory
for most fractal sets cannot be calculated analytically, and Wep 3] the definition of the generalized dimensions is intro-
are forced to resort to numerical methods. duced through the following steps, where the definition of an
The best known numerical metho[‘k—G] to characterize | Covering of a setA is used. Consider a set of sdik
the multifractal sets are based on box-counting algorithmsboxeg with the properties1) the sizel; of the setU; obeys
[7-9] based on the construction of very simple coveringsthe conditionl;<I (I is the size of the biggest biix(2)
Usually, we just consider a grid, that is, a set of boxes of thaJ,UU,U---UyDA (the union of all boxes contains the
same size arranged side by side as in a chessltasigshown  whole se}; and (3) U;NU; is empty, for every paif,j<N
in Fig. 1). However, we have already pointed out that gridsandi=j (the boxes do not overlap
are not very good coverind40]. Indeed, these simple grids  The probabilityp; is defined as the integral of the invari-
can lead to the existence of boxes that have a small probabil-
ity p; because they are almost entirely filled with empty
space(instead of reflecting the weight of a region with just a e
few fractal point$. These “spurious” boxes of the standard ]
box-counting algorithmgsee some examples in Fig) are T~
responsible for significant distortions of the curves Iy \§
andf(a) (especially of theg<0 branches, which are asso- \
ciated with regions of small probabilitiesAlso, the distor- \\\ N
tions introduced by those spurious boxes do not vanish in the N
limit of small boxes[10]. This kind of difficulty may be 3
overcome if we are able to consider boxes which do not A \
belong to a particular grid. / ]
In this paper we describe an alternate box-counting algo- Y
rithm to construct much better coverings. The boxes still /" ‘
have the same size and orientation, but are not arranged in a /f"-’; /
grid. As this type of covering is closer to the theoretical —
definitions, we are able to eliminate most of the spurious — ]
boxes, and obtain significantly better results @ and =
f(a). We present some tests for the attractor of the logistic //

\\-

\>

*Electronic address: yamaguti@onsager.if.usp.br FIG. 1. The Haon attractor covered by a grid that leads to the
Electronic address: prado@uspif.if.usp.br existence of spurious boxékbeled by the letteA).
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ant measure insidd; . Numerically, the set is represented by
points, so the probability; is the fraction of points inside
the boxU;.

To define the generalized dimensions, let us consider the
following points related to the spectrum of mags)).

(1) Define a functionl’(A,q,7,{U;},1)==N(p¥17) .

sudl'(A,q,7,{U;},1)} forg>1
{1}
inf{l"(A,q,7,{U;},1)} forg<1.
{1}

(2) I'(A,q,7.1)=

(3) Then take the limif"(A,q,7)=lim,_['(A,q,7,1).

(4) Finally, impose the conditiol’(A,q,7)=1 to estab-
lish a single relation betweenandq, given by the function
7(q).

There is a relationship between the spectrum of mass
7(q) and the curvesD, and f(«). In fact, we have
7(q)=(q—1)Dy, andf(«) is the Legendre transformation
of 7(q). 3 5 5 3 5

The numerical calculations @, andf(«) using a box-
cou.n.ti.ng algorithm usqally follow the steps of the theoretical 5 5 Covering of the Heon attractor according to Oiwa’s
definition. Let us consider the definition b{(A,q,7,1). Itis 4 50rithm. The sequence of the partitionings is indicated by the
important to emphasize that this step establishes that the begfmbers. The boxes of the covering are adapted to the geometry of
covering of the sef must be used. As we mentioned before, the set. Although having the same size and orientation, they do not
in the usual box-counting algorithms, the covering is ob-pelong to a grid.
tained through the introduction of a grid. This kind of cov-

ering is very simple and usually very different from the op- . . . .
timal cover required by the theory. The use of a grid distortdifractal set, isolating each part, which can now be regarded

the f () curve. For instance, it allows the existence of many?S an individual new set, so the algorithm does not have a
spurious boxes. On the other hand, the box-counting algcd!oPal notion of the geometry of the original fractal struc-
rithm presented in this paper eliminates most of the ”spuri-ture- Although Oiwa’s algorithm does eliminate part of the

ous” boxes, and provides a much better covering of the mul€Mpty space in the boxes, it still leads to the presence of
tifractal set. many spurious boxes, and the resulting curvesf{er) and

D are still deformed.
We now propose a procedure to further reduce the spuri-
ous boxes on the covering. According to our procedure, a
Our algorithm is a modification of an idea of Oiwa and spurious box is removed by moving a whole group of boxes.
Ferrara[11]. In Oiwa’s algorithm the covering of the multi- Although the properties of these groups of boxes may be
fractal set is provided by boxes of the same size and orierregarded, at first sight, as very restrictive, we will see that
tation, but they are not arranged in a grid. Several of thesboxes with these properties are in fact very much usual.
coverings are constructed for the same set; every new coGlusters that cannot be treated by our algorithm are de-
ering is constructed from the old one through the partitioningscribed in the Appendix.
(a partition is a real division in a region of space; the parts The boxes that we are able to move in order to eliminate
resulting from this division are isolated, and this partitionthe spurious boxesee Fig. 3form a group with the follow-
remains in all subsequent new coverings constructed in thimg properties.
se) of the boxes. The size of the boxes on the new covering (1) The boxes of the group are placed side by side, along
is half of the size of the boxes of the old covering, and thethe same direction of the space, as in a line embedded in that
first covering is taken as a square box that contains the wholgpace.
multifractal set. The boxes are patrtitioned if the interval of (2) Each box of the group has only two neighboring
points inside them is bigger than half the size of the boxboxes, one at each side, except for the boxes at the end of the
Otherwise, the box is shrunk, and no division is needed. Thgroup, which might have only one neighbor.
shrinking of a box eliminates the empty space and results in (3) The boxes at the end of the group must have some
a much better procedure than piling boxes side by side. empty space inside them. This empty space must be located
A covering constructed with this algorithm for the ttn  at the side of the box that has no neighbor, that is, at the end
attractor is shown in Fig. 2. The details of the algorithm will of the group. The sum of the empty space present in the
be described in the Appendix. The ki attractor is a two- boxes located at the end of the group has to be greater than
dimensional set, so after each two subsequent sequencestbé size of the box, so that one box can be eliminated by
partitions, we have a covering for the multifractal. moving the whole group.
Since the coverings are constructed by partitioning, they An example of this new step is given in Fig. 4, where we
are all correlated. These partitionings really divide the mul-have the same covering shown in Fig. 2, after the application

II. OUR ALGORITHM
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Ill. APPLYING OUR ALGORITHM

spurious box

There are several methods that use box-counting algo-
rithms to evaluatd («) andDg. In this paper we have used
the canonical methofb] to evaluate thd («) function and
observe the effects of our algorithm. The canonical method
uses a box-counting algorithm to obtain the probabilipes
associated with the covering of a set. The equations of the
canonical method are given by

FIG. 3. Two-dimensional space: Example of the grdgpay)

treated by the algorithm. p?(e)
Mi(5:Q):—E_pq(6), (1)

of this procedure. The boxes that were moved are shown in M
thick lines. Sipilng,

The future partitions are made on this new corrected cov- a(q)=Iim e 2
ering. Then, the new covering is corrected again and again, =0
until we obtain a covering with boxes as small as desired for
that particular multifractal set. f(a(q))= lim Zipmilnp; 3)

The algorithm is useful for all sets that are represented by c.o Ine '’

points and, as already stated, it increases the accuracy of the

calculations of the negative branch fiffa). We must point  wheree is the size of the boxes.

out, however, that in very particular situations it may be Using the curves;pilny; and=;uilny; as a function of
better to use the usual approach. That will be the case of thee, we finally getf(«) in a parametric way.

application of the method of histograms in sets with an ex- Three sets were used to test our algoritliinthe attractor
tremely rough distribution of probabilitieuch as Cantor of the logistic map [12] x;;;=Ax(1—x), with

sets embedded in one-dimensional spatéhen applying A=3.569 946;(ii) a binomial measur¢12] with 1,=0.4,

the method of histograms for those sets, the average amomg=0.35, p;=0.6; and(iii) the attractor of the Heon map
different positions of the grid becomes an essential step if13], xi+1=1—Axi2+yi andy;,=Bx, with A=1.4 and

the calculation off (). It smooths the distribution, which B=0.3.

leads to a smootli(«) curve. The algorithm we propose The first and second sets are one dimensional, and were
tries to adapt itself to the set, generating a unique distributio§hosen because they are rare examples of sets for which it is
of probabilities. This distribution is closer to the ideal one.Possible to calculaté(a) theoretically. Once the groups of
As it is made by peaks, it is very irregular and consequenthpoxes we are able to move in our correction procedure are of

any method that makes use of histograms will lead to irregu@ restricted type, the algorithm cannot eliminate all the spu-
lar f(a) curves. rious boxes it finds. So, we made different coverings using

different orientations of boxes, and consider in the final cal-
culation that one which corresponded to the inf/sup criteria
of step 2 of the theoretical definition afq). Also, we have
studied one-dimensional sets embedded in a two-
dimensional space to be able to consider different orienta-
tions of the coverings.

The binomial measure was represented by 200 000 points,
and the attractor of the logistic map by 300 000. The param-
eters of the method, in both sets, werg
=0,+1,+2,...,10.e=2"",i=1,2,...,10. Fifty-one dis-
placements of the grid were used in the usual box counting,
and 51 rotations of boxes in our box counting, in an angle of
45°, The points of the binomial measure were generated by
an iterated function systefii4]. The results for the attractor
of the logistic map are shown in Fig. 5. For the binomial
measure, they are shown in Fig. 6.

The two-dimensional set of Hen attractor was repre-
sented by a group of 210° points. The parameters of the
method were taken asq=0,+1,+2,...,#10, and
e=2""'1i=1,2,...,8. As in the one-dimensional case, 97
displacements of the grid were used in the usual box count-
ing, and 97 rotations of boxes, by an angle of 90°, in our box

FIG. 4. Covering constructed by our algorithm. The boxes arecountipg. There is no analytical solution for the attractor of
the same as in Fig. 2, except those in thick lines, that have beete Hewon map, so we compare our results with the
moved. This translation eliminates spurious boxes from the coverf(«) obtained from an application of the fixed mass method
ing, and corrects the distortions of the results. [15] (which has been chosen because it does not require the
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FIG. 5. f(a) curve: Attractor of the logistic map in the onset of FIG. 7. f(a) curve: Attractor of the Heon map
chaos. Black circles: theoretical results. White circles: our bOX‘Xi+1=1-0—AXi2+yi andy; ;=By; with A=1.4 andB=0.3. Solid
counting algorithm. White triangles: usual box-counting algorithm.jines: fixed mass method. White circles: our box-counting algo-

rithm. White triangles: usual box-counting algorithm.

calculation of the probabilities of the set using a box-
counting algorithm. We need to point out that, although in are not reached. In the attractor of thenda map, there is a
the case of the H®n map(see Fig. 7 our method leads to considerable difference between the results obtained with our
results better than the ones obtained by the usual box courdnd the usual algorithm, because in two dimensions the rich-
ing, and comparable to the results obtained by the fixed massess of the structure of the set can hardly be noted using a
approach, for sets with a very irregular distribution of prob-grid. The different arrangements of the boxes in the cover-
abilities (as Cantor sejsthe fixed mass approach does notings used by our algorithm may produce better results in
work well. In these cases our algorithm combined with thehigher dimensions. For all these calculations, the processing
canonical or microcanonical approach will lead to better retime was small. In Table | we show how the CPU time and
sults. the amount of memory needed to apply our algorithm to the
Most of the results obtained with our box-counting algo-Henon map(with standard parametess=1.4 andB=0.3)
rithm are much better than the results obtained with the usuahcreases with the number of points of the set. Those results
algorithm. The results are still different from the analytical were obtained with a SPARC 2. The coding of our algorithm
predictions, because of various effects. The plots ofs complex, but not all of its parts are necessarily processed,
Zipilnw; andZ; uiInw; were not perfectly straight lines; their so it is still fast, even when compared with correlation inte-
points fluctuate around a linghese fluctuations are usually gral methodg$16,17].
associated with an effect of lacunajitirhe sizes of boxes in
the algorithm were always equal, so, for instance in the gen-
eralized Cantor set, the correct probabilities of the prefractals IV. COMMENTS AND CONCLUSIONS

The box-counting algorithm based on a "smart covering”
0.80 ; ; ; improves the calculation df(a) andDg, very significantly.
The new covering adjusts to the geometry of the set, in
agreement with the ideas of the theoretical definitions. The
significant improvement in the final results confirms our con-
jecture that the existence of spurious boxes in the covering of
the traditional box-counting algorithms is the main source of
error in theq<<0 branch of the curves. Although the proce-

0.60 -

g o040 dure of codification is a bit long, it is important to point out
TABLE I. CPU times and memory for applying the new algo-
020 | rithm to the Heon attractor in a SPARC 2. All the parameters were
kept constant except for the number of points.
Number of points CPU tim¢h:s) Memory (Mb)
*hso 00 o 080 *® 100000 1:23 11.8
500 000 6:34 16.9
FIG. 6. f(a) curve: Binomial measure),;=0.4,1,=0.35, 100 0000 14:43 22.5
p.=0.6. Black circles: theoretical results. White circles: our box- 150 0000 19:17 28.7

counting algorithm. White triangles: usual box-counting algorithm.
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Box Counting Algorithm — First Part

Repeat dim times

Repeat for all boxes bozold of the covering

Choose one component comp of the space in the box boxold. We have
chosen the one that has table[comp] = 0 and the biggest
interv = pnt [eomp] — prtmin[comp].

Is the interval interv bigger than size/2 ?

The box will be partitioned in
component comp.

The box will be shrunk in
component comp. A copy

b of the box bozold is
added to the new covering.

This part is described in fig. 9.

It will appear an empty space.
boznew — scprgtlcomp] is
increased by size/2.

The boxes are centralized in the interval of points at this stage. This is
done in a similar way of the steps of dividing the box. The variables
bowpos{comp), spel ft[comp] and spergt[comp] may be changed.

table[comp] is set to 1. This indicates that this size of the box is
smaller. It is necessary to check if the box is square. It is square if all
values of table[] are equal to one. In this case, size is divided by two,
and all the values of table|] are set to zero. Otherwise, they are left
unchanged.

Next, we erase the old intermediate covering. Rename the new
intermediate covering old and repeat all the steps to create a new
intermediate covering. We call them intermediate covering because there
may have rectangular boxes.

Box Counting algorithm — Constructing a cluster

For cach box of the covering, repeat for all components of space.

A half cmpty box boz[0] in the component comp must be found. The direction in
which the cluster will be moved depends on the position of the empty space inside
this box. Sce item 1. Consider i = 1.

In the component comp and the direction defined above, ncighboring boxes arc
scarched for.

Was onc neighbor of boz[i — 1) found ?

Y

If only onc ncighbor box boz[z) is found, the number of ncighbors of
this box in the opposite dircction of the shift of the cluster must be
determined.

Is the box boz[i] ncighbor of only boz[i — 1] 7
v [i) neig y boz[i —1] N

If boz[i] has only boz[i — 1] as ncighbor, the spaces in the
transversal component ¢rans have to be checked. (Sce fig. 11a),
and item 2.

there is space in component trans to fit a box ¢

Y

The box bow(i] is accepted in the cluster. The cluster
can be finished if the sum of empty space inside bozf]
and boz[0] is cnough to fit onc box. Sec item 3.
i=i+ 1

- .
Y Can the cluster be finished ? N

the cluster is shifted.

Sce fig. 14.

Until the formation of the cluster, or a violation of its conditions.

FIG. 10. Nassi-Schneiderman diagram of the cluster construc-

FIG. 8. Nassi-Schneiderman diagram of the first part of the altion procedure, used in the second part of the algorithm.

gorithm.

treat other kinds of clusters. The possibility of extending our

that it is not time consuming, and that the final results aredlgorithm to higher dimensions has to be further investigated

rewarding.

to check whether a single kind of cluster of boxes could

The first part of the algorithm can be used to deal Withe!iminaye the majority of spurious boxgs, as observed in two
higher dimensions in a trivial way. In the second part, how-dimensions. In practice, these extensions are not frequently
ever, we have to introduce some modifications to be able t§sed, as all box-counting algorithms in dimensions higher

Box Counting algorithm — Dividing the box

Two new structures boxzl ft and bozrgt, representing the new boxes, are
created. Their values are all equal to oldboz, except for

bowl ft — spergt[comp] = boxrgt — spel ft{comp] = 0, because they are
neighbors.

The box will be divided as near as is possible of the middle value of interv. A
variable mute is created.

mute = pntminfcomp] + interv/2 — (boxposfcomp] + size/2). If

mute > spergtfcompl, do mute = spergtfcomp]. If —mute > spcl ft[comp], do
mute = —spcl ft[comp).

Both boxes must be shifted by mute. This means

bozl ft — bozpos|comp] = bozold — bozpos[comp] + mute and

boxrgt — boxpos|comp) = bozlft — boxpos[comp] + size/2. The spaces around
the boxes change too. boxrgt — spergt decreases by mute, bozl ft — spelft
increases by mute.

The points are separated into the right boxes. Points with coordinate in
component comp smaller than the value bozrgt — bozpos{comp] belong to the
bozlft, otherwise belong to the bozrgt. This determines the values of mypnt in
the two structures. It also changes row|].

The interval that contains the points inside the boxes in all components of
space must be determined. pntmin[] and pntmaz(] are defined in both
structures.

than two use a larger amount of memory to store in the
boxes. In the Appendix we describe in detail the process of
coding our algorithm.

APPENDIX: DESCRIBING THE ALGORITHM
1. Overview

The program was written in C. Some notations and sym-
bols used in the description below are familiar to C users. At
first sight this description may seem to be a little complicated
and difficult to codify, but the ideas used here are simple and
the improvements in the results are significant.

In order to build our coverings, we start with one square
box that contains the whole set. Based on this initial cover-
ing, the algorithm will construct a new covering of boxes
with half the size of the previous one. This is achieved in two
parts. In the first partOiwa’s algorithm), a new covering is
constructed by partitioning the space. In the second part,
spurious boxes are eventually found and eliminated through
the displacement of a cluster of boxes. This procedure is
repeated until the size of each box in the covering is as small
as desired for that specific set.

In the results presented in this paper, just one cluster is

FIG. 9. Nassi-Schneiderman diagram of the box division proce-@nalyzed by us, which is very simple, but the majority of the

dure, used in the first part of the algorithm.

spurious boxes of the covering belong to this kind of cluster.
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Box Counting algorithm — shifting a cluster

If the direction to move the cluster is to the left, invert all the positions of boz{). Now
all the clusters will move to the right.

The displacement disp that will be applied to the cluster must centralize it, taking into
account the interval of points inside it. disp = boz0 —

a) b) (pntmin[comp] — bozpos[comp]) — box[N] — (pntmaxz{comp] — bospos[comp])/2. Let
i=1
FIG. 11. (a) Step of construction of a cluster to eliminate Spu- The boxes have to be shifted in couples, boz[i) and boz{i + 1], because points in one
. . box may have to pass to its neighbor. Add disp to boz[i] — bozpos[comp];
rious boxes. The clustégrayed cannot be replaced by a single box box[i] — bozpos[comp] + size will be the limit used to separate the points. If the
iti i point in boz[i + 1] has its value in the comp component greater than this limit, it

because of the pOSIt.Ion of the nearest bQ)(b}s.CorreCtI(?n of the will stay in the box. Otherwise, it will be moved to box[]. This division of point
Space around the shifted box. At the left side of the shifted box, the will change row and may change boz[i + 1] — mypnt.
boxes are aligned, so no change is needed. At the right side, tt ) } -

. Rk Recalculate the values of prntmin{] and pntmazf] of bozfi], that are the intervals
smallest distance to the nearest boxes has to be considered. that contain all points inside the box. Do i =i + 1.

Repeat for all couples of neighboring boxes that belong to this cluster, or until

It consists of a chain of boxes along the same component ¢ |i=~-1
Space that was used to determlne that a _bOX was SpU“OL The last box, boz[N}, must have no points now. This is the box to be eliminated. The
These boxes are aIWayS placed side by Slde, and along th | pointers of the covering that points to this box have to be changed.
Component they ha.Ve as neighbors Only bOXeS that b6|0ng W Because of the elimination of one box, an empty space will appear.
the cluster, except for the boxes at the end, that togethe |soz[o] » spelftlcomp] will be increased by disp, and boz[V =~ 1] — spergtlcomp] will
. P . be increased by size ~— disp.
should have enough empty space to permit the elimination c
one bOX(See Flg 3, May be necessary to modify the spaces in the transversal component of the new boxes,
. . . . see fig. 11b. The boxes in the left side of the cluster are aligned, so no change is

ln the rest Of th|S appendlx we WI” descrlbe the Way we needed there. In the right side, though, the smallest distance to the nearest boxes have

code this algorithm. to be placed in the variable spergt[trans).

The boxes now must be centralized in the interval of points that exist into them. This
may change bozposl], spclft]] and spergt.

2. Description of the variables

The main variables of the algorithm are the ones that rep- . 13, Nassi-Schneiderman diagram of the cluster shifting
resent the boxes of the covering. Consider that the points Qfiocedure, used in the second part of the algorithm.

the set are saved in an arrpgints[ ], and the dimension of
the system is represented by the variatien. Each box of
the covering is represented by the set of eight variables d

Qoints of the box will be explained below.

scribed below. They form a structure in the context of C. A covering is a chain of these structures. Each structure
(1) boxpos[dim]represents the position of one corner of Nas a pointer to the next box of the covering and to the
the box. previous one.
(2) sizesaves the biggest size of the bekcan be rect- The subset of points that belong to each box is kept using
angulay. the same method presented by Grassbdrf@r We use an

(3) table[dim] indicates, for each component, if the size is arrayrow [ ] that has the same size pbints[ ]. This array
equal to the biggest one, or if it is a half of(there are no contains integers that represent positions in the gogts
other values for box size [ ]. They are pointers to points of the set. For example, con-

(4) pntmin[dim],pntmax[dim]represent the smallest rect- sider a box that contains the whole set. We choose
angle that contains all the points that are inside the box. mypnt=0 androw[i]=i+1, except for the last value, that

(5 spclft[dim],spcrgt[dim] save the amount of empty should contain—1. If one wants to know which points
SpaCE(WithOUt boxe$ around the box in that direction. be|0ng to this bOX, just look amypnt It says that the

(6) mypntsaves the position of only one of the points of point 0 belongs to the box. The next point that belongs to
points[ ] that are inside the box. The way we save the othetho pox is row[mypnf=row[0]=1. The next one is
row[row[mypnf[]=2, and so on, until the value-1 is
reached. It indicates that there are no more points in that box.
The data inrow [ ] must be updated to keep the information
of the distribution of points in every cover.

3. The first part of the algorithm: Oiwa’s algorithm

The algorithm starts defining the values of the points of
the set(points[ ]) and the dimension of the sedifm). The
points can be proportionally distorted to fit in a single square

FIG. 12. Two-dimensional space: After the movement of theb0X that must be constructed with the values described
cluster, it is necessary to check if there are overlappings of boxes GPove.
uncovered points. Ifa) the distribution of points in the middle box ~ The first part of the algorithm consists of the steps shown
of the cluster(gray) makes it possible to replace the cluster by two in Figs. 8 and 9. The covering shown in Fig. 2 was con-
boxes(dotted. In (b) this is not possible. structed using only this part of the algorithm.

a)
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will be applied to cluster is to the left. Ipntmax[comp]-
boxpos[compksize/2 the shift will be to the right. In both
cases the box is also half empty.

(2) The examination on the componemans is done by
considering the distance between the corner of the boxes that
form the cluster, dist=box[i-1]— boxpos[trans]-box([i]

FIG. 14. Two-dimensional space: Example of a cluster that has— Poxpos|trans] If dist is positive, the space for the box
not been treated by the algorithm. The solution for this case shoulthat will replace box[i] and box[i-1] is dist=size-dist

be a vertical shif(dotted of the cluster of three boxegrayed. + box[i] —spcrgt[trans}+box[i-1]— spclftftrans]. Other-
wise, dist=size-dist-box[i-1] — spcrgt[trans]+box]i]
4. The second part of the algorithm: —spclftftrans]. If dist is greater tharsize there is enough
Reducing the number of spurious boxes space for the new bojsee Fig. 11a)].

] o ) (3) To finish the cluster, the following conditions must be
The second part of the algorithm is divided in two steps.tyye: If the direction in which the cluster will be moved is to

In the first step, a group of boxes is defined. This group willthe right, box[0]— (pntmin[comp]-boxpos[comp])-box]i}>
be moved in the second step of the algorithm, eliminatingpntmax]comp]-boxpos[compB0. Otherwise, it isbox]i]
one spurious box. These two steps must be repeated for all. (pntmin[comp]-boxpos[comp])-box[6} (pntmax[comp]-
components of the space and for all spurious boxes detectésbxpos[comp])>0.
in the covering. In the two-dimensional space, moving a cluster can break
The algorithm depends on the dimensibim of the set.  the conditions of a valid covering because it can produce
We will give a description in the two-dimensional space. Inoverlapping of boxes or can leave uncovered points. That
this part of the algorithm, it is necessary to find a cluster ofproblem cannot be determined beforehdsee Fig. 12 so
boxes to be shifted, so a group of neighboring boxes has tthe previous values of the variables that define the cover, the
be localized. We used a usual box-counting algorithm to ddoxes of the cluster, anw{ ], must all be saved. If some
this. Consider the set of box positiohexpos[ ], and cover problem occurs after the shifting of the cluster, the state of
this set with a grid of boxes that have same sizee The the variables before it can be restored.
boxes of the covering will be associated with only one box of To move this cluster oN boxes, we will proceed accord-
the grid, and in this grid it is easy to find neighboring boxes.ing to the steps shown in Fig. 13.
Considering two boxes for which the correspondent boxes in  Now, the probabilities assigned to the boxes can be deter-
the grid are neighbors, we can make use of the distancmined. For instance, the sumsp;Iny; and=; u;Inw; can be
between them to determine if they are really neighbors. Arcalculated for this size of box if the canonical method is
ordered list that associates the label of each box in the cowpplied in the multifractal set.
ering with the pointer of that box in the grid must be created. As already mentioned, we do not consider all clusters
We will represent the cluster by an array of structseg  containing spurious boxes. In Fig. 14 we show a basic cluster
[ ]. The steps for constructing this structure are presented ithat is not treated. The clusters that we have used are similar
Fig. 10. Some relevant details of the procedure of these stepgs one-dimensional structures in a two-dimensional space.
are described below. There are other kinds of clusters that can be treated by the
(1) The direction of the shift of the cluster is determined algorithm, but the clusters which we have considered are
by looking at the position of the empty space of the boxmuch more numerous, so the numerical results were not so
box[0]. If pntmin[comp]-boxpos[comp}size/2 the shift that compromised by this restriction.
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