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Smart covering for a box-counting algorithm
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We describe a box-counting algorithm that does not use a grid to cover a multifractal set. It leads to better
results, especially in theq,0 region of the curvesf (a) andDq . We present tests of this algorithm for the
attractor of the logistic map on the onset of chaos, for a binomial measure, and for the attractor of the He´non
map.@S1063-651X~97!05104-0#

PACS number~s!: 02.70.2c, 61.43.Hv, 05.45.1b
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Multifractal objects have been identified in many physic
situations@1#, ranging from problems of aggregation to th
behavior of chaotic dynamical systems. The multifractal s
are usually characterized@2,3# by the generalized dimension
Dq and the associated spectrum of singularitiesf (a).

In the actual calculations, we usually introduce a cover
which consists of a collection of boxes that contain t
whole multifractal set, and associate a probabilitypi with
each box. The definition of the generalized dimensionsDq

and the spectrum of singularitiesf (a) are based on thes
probabilities, which are supposed to be the integral of
invariant measure inside the boxes. As the theoretical co
ings are required to have some properties that are very d
cult to achieve in practice, the expressions ofDq and f (a)
for most fractal sets cannot be calculated analytically, and
are forced to resort to numerical methods.

The best known numerical methods@4–6# to characterize
the multifractal sets are based on box-counting algorith
@7–9# based on the construction of very simple coverin
Usually, we just consider a grid, that is, a set of boxes of
same size arranged side by side as in a chessboard~as shown
in Fig. 1!. However, we have already pointed out that gr
are not very good coverings@10#. Indeed, these simple grid
can lead to the existence of boxes that have a small prob
ity pi because they are almost entirely filled with emp
space~instead of reflecting the weight of a region with just
few fractal points!. These ‘‘spurious’’ boxes of the standar
box-counting algorithms~see some examples in Fig. 1! are
responsible for significant distortions of the curves forDq
and f (a) ~especially of theq,0 branches, which are asso
ciated with regions of small probabilities!. Also, the distor-
tions introduced by those spurious boxes do not vanish in
limit of small boxes@10#. This kind of difficulty may be
overcome if we are able to consider boxes which do
belong to a particular grid.

In this paper we describe an alternate box-counting a
rithm to construct much better coverings. The boxes s
have the same size and orientation, but are not arranged
grid. As this type of covering is closer to the theoretic
definitions, we are able to eliminate most of the spurio
boxes, and obtain significantly better results forDq and
f (a). We present some tests for the attractor of the logi
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map on the onset of chaos, for a binomial measure, and
the attractor of the He´non map.

This paper is divided as follows. In Sec. I, we present
theoretical definitions associated with the problem. In Sec
we describe the method to construct a better covering fo
box-counting algorithm, and in Sec. III we present some
sults obtained with this new method. In Sec. IV, we summ
rize our conclusions. In the Appendix the algorithm is d
scribed in detail.

I. DEFINITIONS OF THE MULTIFRACTAL THEORY

The statistical properties of a multifractal set are char
terized by the generalized dimensionsDq and the associated
spectrum of singularitiesf (a). In the multifractal theory
@2,3# the definition of the generalized dimensions is intr
duced through the following steps, where the definition of
l covering of a setA is used. Consider a set of setsUi
~boxes! with the properties~1! the sizel i of the setUi obeys
the condition l i< l ( l is the size of the biggest box!; ~2!
U1øU2ø•••UN.A ~the union of all boxes contains th
whole set!; and ~3! UiùUj is empty, for every pairi , j<N
and i5 j ~the boxes do not overlap!.

The probabilitypi is defined as the integral of the invar

FIG. 1. The He´non attractor covered by a grid that leads to t
existence of spurious boxes~labeled by the letterA).
7726 © 1997 The American Physical Society
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55 7727SMART COVERING FOR A BOX-COUNTING ALGORITHM
ant measure insideUi . Numerically, the set is represented b
points, so the probabilitypi is the fraction of points inside
the boxUi .

To define the generalized dimensions, let us consider
following points related to the spectrum of masst(q).

~1! Define a functionG(A,q,t,$Ui%,l )5( i
N(pi

q/ l i
t) .

~2! G~A,q,t,l !5H sup
$ l i %

$G~A,q,t,$Ui%,l !% for q.1

inf
$ l i %

$G~A,q,t,$Ui%,l !% for q,1.

~3! Then take the limitG(A,q,t)5 lim l→0G(A,q,t,l ).
~4! Finally, impose the conditionG(A,q,t)51 to estab-

lish a single relation betweent andq, given by the function
t(q).

There is a relationship between the spectrum of m
t(q) and the curvesDq and f (a). In fact, we have
t(q)5(q21)Dq , and f (a) is the Legendre transformatio
of t(q).

The numerical calculations ofDq and f (a) using a box-
counting algorithm usually follow the steps of the theoreti
definition. Let us consider the definition ofG(A,q,t,l ). It is
important to emphasize that this step establishes that the
covering of the setA must be used. As we mentioned befo
in the usual box-counting algorithms, the covering is o
tained through the introduction of a grid. This kind of co
ering is very simple and usually very different from the o
timal cover required by the theory. The use of a grid disto
the f (a) curve. For instance, it allows the existence of ma
spurious boxes. On the other hand, the box-counting a
rithm presented in this paper eliminates most of the ’’spu
ous’’ boxes, and provides a much better covering of the m
tifractal set.

II. OUR ALGORITHM

Our algorithm is a modification of an idea of Oiwa an
Ferrara@11#. In Oiwa’s algorithm the covering of the multi
fractal set is provided by boxes of the same size and or
tation, but they are not arranged in a grid. Several of th
coverings are constructed for the same set; every new
ering is constructed from the old one through the partition
~a partition is a real division in a region of space; the pa
resulting from this division are isolated, and this partiti
remains in all subsequent new coverings constructed in
set! of the boxes. The size of the boxes on the new cover
is half of the size of the boxes of the old covering, and
first covering is taken as a square box that contains the w
multifractal set. The boxes are partitioned if the interval
points inside them is bigger than half the size of the b
Otherwise, the box is shrunk, and no division is needed.
shrinking of a box eliminates the empty space and result
a much better procedure than piling boxes side by side.

A covering constructed with this algorithm for the He´non
attractor is shown in Fig. 2. The details of the algorithm w
be described in the Appendix. The He´non attractor is a two-
dimensional set, so after each two subsequent sequenc
partitions, we have a covering for the multifractal.

Since the coverings are constructed by partitioning, th
are all correlated. These partitionings really divide the m
e
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tifractal set, isolating each part, which can now be regar
as an individual new set, so the algorithm does not hav
global notion of the geometry of the original fractal stru
ture. Although Oiwa’s algorithm does eliminate part of th
empty space in the boxes, it still leads to the presence
many spurious boxes, and the resulting curves forf (a) and
Dq are still deformed.

We now propose a procedure to further reduce the sp
ous boxes on the covering. According to our procedure
spurious box is removed by moving a whole group of box
Although the properties of these groups of boxes may
regarded, at first sight, as very restrictive, we will see t
boxes with these properties are in fact very much usu
Clusters that cannot be treated by our algorithm are
scribed in the Appendix.

The boxes that we are able to move in order to elimin
the spurious boxes~see Fig. 3! form a group with the follow-
ing properties.

~1! The boxes of the group are placed side by side, alo
the same direction of the space, as in a line embedded in
space.

~2! Each box of the group has only two neighborin
boxes, one at each side, except for the boxes at the end o
group, which might have only one neighbor.

~3! The boxes at the end of the group must have so
empty space inside them. This empty space must be loc
at the side of the box that has no neighbor, that is, at the
of the group. The sum of the empty space present in
boxes located at the end of the group has to be greater
the size of the box, so that one box can be eliminated
moving the whole group.

An example of this new step is given in Fig. 4, where w
have the same covering shown in Fig. 2, after the applica

FIG. 2. Covering of the He´non attractor according to Oiwa’s
algorithm. The sequence of the partitionings is indicated by
numbers. The boxes of the covering are adapted to the geomet
the set. Although having the same size and orientation, they do
belong to a grid.
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7728 55MARCOS YAMAGUTI AND CARMEN P. C. PRADO
of this procedure. The boxes that were moved are show
thick lines.

The future partitions are made on this new corrected c
ering. Then, the new covering is corrected again and ag
until we obtain a covering with boxes as small as desired
that particular multifractal set.

The algorithm is useful for all sets that are represented
points and, as already stated, it increases the accuracy o
calculations of the negative branch off (a). We must point
out, however, that in very particular situations it may
better to use the usual approach. That will be the case o
application of the method of histograms in sets with an
tremely rough distribution of probabilities~such as Cantor
sets embedded in one-dimensional space!. When applying
the method of histograms for those sets, the average am
different positions of the grid becomes an essential ste
the calculation off (a). It smooths the distribution, which
leads to a smoothf (a) curve. The algorithm we propos
tries to adapt itself to the set, generating a unique distribu
of probabilities. This distribution is closer to the ideal on
As it is made by peaks, it is very irregular and consequen
any method that makes use of histograms will lead to irre
lar f (a) curves.

FIG. 3. Two-dimensional space: Example of the group~gray!
treated by the algorithm.

FIG. 4. Covering constructed by our algorithm. The boxes
the same as in Fig. 2, except those in thick lines, that have b
moved. This translation eliminates spurious boxes from the co
ing, and corrects the distortions of the results.
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III. APPLYING OUR ALGORITHM

There are several methods that use box-counting a
rithms to evaluatef (a) andDq . In this paper we have use
the canonical method@5# to evaluate thef (a) function and
observe the effects of our algorithm. The canonical meth
uses a box-counting algorithm to obtain the probabilitiespi
associated with the covering of a set. The equations of
canonical method are given by

m i~e,q!5
pi
q~e!

( j pj
q~e!

, ~1!

a~q!5 lim
e→0

( i pi lnm i

lne
, ~2!

f „a~q!…5 lim
e→0

( im i lnm i

lne
, ~3!

wheree is the size of the boxes.
Using the curves( i pi lnmi and( im i lnmi as a function of

lne, we finally get f (a) in a parametric way.
Three sets were used to test our algorithm:~i! the attractor

of the logistic map @12# xi115Ax(12x), with
A53.569 946;~ii ! a binomial measure@12# with l 150.4,
l 250.35, p150.6; and~iii ! the attractor of the He´non map
@13#, xi11512Axi

21yi and yi115Bxi , with A51.4 and
B50.3.

The first and second sets are one dimensional, and w
chosen because they are rare examples of sets for which
possible to calculatef (a) theoretically. Once the groups o
boxes we are able to move in our correction procedure ar
a restricted type, the algorithm cannot eliminate all the s
rious boxes it finds. So, we made different coverings us
different orientations of boxes, and consider in the final c
culation that one which corresponded to the inf/sup crite
of step 2 of the theoretical definition oft(q). Also, we have
studied one-dimensional sets embedded in a tw
dimensional space to be able to consider different orien
tions of the coverings.

The binomial measure was represented by 200 000 po
and the attractor of the logistic map by 300 000. The para
eters of the method, in both sets, wereq
50,61,62, . . . ,10.e522 i , i51,2, . . . ,10. Fifty-one dis-
placements of the grid were used in the usual box count
and 51 rotations of boxes in our box counting, in an angle
45°. The points of the binomial measure were generated
an iterated function system@14#. The results for the attracto
of the logistic map are shown in Fig. 5. For the binom
measure, they are shown in Fig. 6.

The two-dimensional set of He´non attractor was repre
sented by a group of 23105 points. The parameters of th
method were taken asq50,61,62, . . . ,610, and
e522 i , i51,2, . . . ,8. As in the one-dimensional case, 9
displacements of the grid were used in the usual box co
ing, and 97 rotations of boxes, by an angle of 90°, in our b
counting. There is no analytical solution for the attractor
the Hénon map, so we compare our results with t
f (a) obtained from an application of the fixed mass meth
@15# ~which has been chosen because it does not require
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55 7729SMART COVERING FOR A BOX-COUNTING ALGORITHM
calculation of the probabilities of the set using a bo
counting algorithm!. We need to point out that, although
the case of the He´non map~see Fig. 7! our method leads to
results better than the ones obtained by the usual box co
ing, and comparable to the results obtained by the fixed m
approach, for sets with a very irregular distribution of pro
abilities ~as Cantor sets! the fixed mass approach does n
work well. In these cases our algorithm combined with t
canonical or microcanonical approach will lead to better
sults.

Most of the results obtained with our box-counting alg
rithm are much better than the results obtained with the u
algorithm. The results are still different from the analytic
predictions, because of various effects. The plots
( i pi lnmi and( im i lnmi were not perfectly straight lines; the
points fluctuate around a line~these fluctuations are usual
associated with an effect of lacunarity!. The sizes of boxes in
the algorithm were always equal, so, for instance in the g
eralized Cantor set, the correct probabilities of the prefrac

FIG. 5. f (a) curve: Attractor of the logistic map in the onset
chaos. Black circles: theoretical results. White circles: our b
counting algorithm. White triangles: usual box-counting algorith

FIG. 6. f (a) curve: Binomial measure,l 150.4, l 250.35,
p150.6. Black circles: theoretical results. White circles: our bo
counting algorithm. White triangles: usual box-counting algorith
-
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are not reached. In the attractor of the He´non map, there is a
considerable difference between the results obtained with
and the usual algorithm, because in two dimensions the r
ness of the structure of the set can hardly be noted usin
grid. The different arrangements of the boxes in the cov
ings used by our algorithm may produce better results
higher dimensions. For all these calculations, the proces
time was small. In Table I we show how the CPU time a
the amount of memory needed to apply our algorithm to
Hénon map~with standard parametersA51.4 andB50.3)
increases with the number of points of the set. Those res
were obtained with a SPARC 2. The coding of our algorith
is complex, but not all of its parts are necessarily process
so it is still fast, even when compared with correlation in
gral methods@16,17#.

IV. COMMENTS AND CONCLUSIONS

The box-counting algorithm based on a ’’smart coverin
improves the calculation off (a) andDq very significantly.
The new covering adjusts to the geometry of the set,
agreement with the ideas of the theoretical definitions. T
significant improvement in the final results confirms our co
jecture that the existence of spurious boxes in the coverin
the traditional box-counting algorithms is the main source
error in theq,0 branch of the curves. Although the proc
dure of codification is a bit long, it is important to point ou

-
.

-
.

FIG. 7. f (a) curve: Attractor of the He´non map
xi1151.02Axi

21yi andyi115Byi with A51.4 andB50.3. Solid
lines: fixed mass method. White circles: our box-counting alg
rithm. White triangles: usual box-counting algorithm.

TABLE I. CPU times and memory for applying the new alg
rithm to the Hénon attractor in a SPARC 2. All the parameters we
kept constant except for the number of points.

Number of points CPU time~h:s! Memory ~Mb!

100 000 1:23 11.8
500 000 6:34 16.9
100 0000 14:43 22.5
150 0000 19:17 28.7
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7730 55MARCOS YAMAGUTI AND CARMEN P. C. PRADO
that it is not time consuming, and that the final results
rewarding.

The first part of the algorithm can be used to deal w
higher dimensions in a trivial way. In the second part, ho
ever, we have to introduce some modifications to be able

FIG. 8. Nassi-Schneiderman diagram of the first part of the
gorithm.

FIG. 9. Nassi-Schneiderman diagram of the box division pro
dure, used in the first part of the algorithm.
e

-
to

treat other kinds of clusters. The possibility of extending o
algorithm to higher dimensions has to be further investiga
to check whether a single kind of cluster of boxes cou
eliminate the majority of spurious boxes, as observed in t
dimensions. In practice, these extensions are not freque
used, as all box-counting algorithms in dimensions high
than two use a larger amount of memory to store in t
boxes. In the Appendix we describe in detail the process
coding our algorithm.

APPENDIX: DESCRIBING THE ALGORITHM

1. Overview

The program was written in C. Some notations and sy
bols used in the description below are familiar to C users.
first sight this description may seem to be a little complicat
and difficult to codify, but the ideas used here are simple a
the improvements in the results are significant.

In order to build our coverings, we start with one squa
box that contains the whole set. Based on this initial cov
ing, the algorithm will construct a new covering of boxe
with half the size of the previous one. This is achieved in tw
parts. In the first part~Oiwa’s algorithm!, a new covering is
constructed by partitioning the space. In the second p
spurious boxes are eventually found and eliminated throu
the displacement of a cluster of boxes. This procedure
repeated until the size of each box in the covering is as sm
as desired for that specific set.

In the results presented in this paper, just one cluste
analyzed by us, which is very simple, but the majority of t
spurious boxes of the covering belong to this kind of clust

l-

-

FIG. 10. Nassi-Schneiderman diagram of the cluster constr
tion procedure, used in the second part of the algorithm.
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55 7731SMART COVERING FOR A BOX-COUNTING ALGORITHM
It consists of a chain of boxes along the same componen
space that was used to determine that a box was spur
These boxes are always placed side by side, and along
component they have as neighbors only boxes that belon
the cluster, except for the boxes at the end, that toge
should have enough empty space to permit the eliminatio
one box~see Fig. 3!.

In the rest of this appendix we will describe the way w
code this algorithm.

2. Description of the variables

The main variables of the algorithm are the ones that r
resent the boxes of the covering. Consider that the point
the set are saved in an arraypoints@ #, and the dimension o
the system is represented by the variabledim. Each box of
the covering is represented by the set of eight variables
scribed below. They form a structure in the context of C.

~1! boxpos[dim]represents the position of one corner
the box.

~2! sizesaves the biggest size of the box~it can be rect-
angular!.

~3! table[dim] indicates, for each component, if the size
equal to the biggest one, or if it is a half of it~there are no
other values for box size!.

~4! pntmin[dim],pntmax[dim]represent the smallest rec
angle that contains all the points that are inside the box.

~5! spclft[dim],spcrgt[dim] save the amount of empt
space~without boxes! around the box in that direction.

~6! mypntsaves the position of only one of the points
points@ # that are inside the box. The way we save the ot

FIG. 11. ~a! Step of construction of a cluster to eliminate sp
rious boxes. The cluster~grayed! cannot be replaced by a single bo
because of the position of the nearest boxes.~b! Correction of the
space around the shifted box. At the left side of the shifted box,
boxes are aligned, so no change is needed. At the right side
smallest distance to the nearest boxes has to be considered.

FIG. 12. Two-dimensional space: After the movement of
cluster, it is necessary to check if there are overlappings of boxe
uncovered points. In~a! the distribution of points in the middle bo
of the cluster~gray! makes it possible to replace the cluster by tw
boxes~dotted!. In ~b! this is not possible.
of
us.
his
to
er
of

-
of

e-

r

points of the box will be explained below.
A covering is a chain of these structures. Each struct

has a pointer to the next box of the covering and to t
previous one.

The subset of points that belong to each box is kept us
the same method presented by Grassberger@18#. We use an
array row @ # that has the same size ofpoints @ #. This array
contains integers that represent positions in the arraypoints
@ #. They are pointers to points of the set. For example, c
sider a box that contains the whole set. We choo
mypnt50 androw@ i #5 i11, except for the last value, tha
should contain21. If one wants to know which points
belong to this box, just look atmypnt. It says that the
point 0 belongs to the box. The next point that belongs
the box is row@mypnt#5row@0#51. The next one is
row†row@mypnt#‡52, and so on, until the value21 is
reached. It indicates that there are no more points in that b
The data inrow @ # must be updated to keep the informatio
of the distribution of points in every cover.

3. The first part of the algorithm: Oiwa’s algorithm

The algorithm starts defining the values of the points
the set~points @ #! and the dimension of the set (dim). The
points can be proportionally distorted to fit in a single squa
box that must be constructed with the values describ
above.

The first part of the algorithm consists of the steps sho
in Figs. 8 and 9. The covering shown in Fig. 2 was co
structed using only this part of the algorithm.

e
he

or

FIG. 13. Nassi-Schneiderman diagram of the cluster shift
procedure, used in the second part of the algorithm.
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7732 55MARCOS YAMAGUTI AND CARMEN P. C. PRADO
4. The second part of the algorithm:
Reducing the number of spurious boxes

The second part of the algorithm is divided in two ste
In the first step, a group of boxes is defined. This group w
be moved in the second step of the algorithm, eliminat
one spurious box. These two steps must be repeated fo
components of the space and for all spurious boxes dete
in the covering.

The algorithm depends on the dimensiondim of the set.
We will give a description in the two-dimensional space.
this part of the algorithm, it is necessary to find a cluster
boxes to be shifted, so a group of neighboring boxes ha
be localized. We used a usual box-counting algorithm to
this. Consider the set of box positionsboxpos@ #, and cover
this set with a grid of boxes that have same sizesize. The
boxes of the covering will be associated with only one box
the grid, and in this grid it is easy to find neighboring box
Considering two boxes for which the correspondent boxe
the grid are neighbors, we can make use of the dista
between them to determine if they are really neighbors.
ordered list that associates the label of each box in the c
ering with the pointer of that box in the grid must be creat

We will represent the cluster by an array of structuresbox
@ #. The steps for constructing this structure are presente
Fig. 10. Some relevant details of the procedure of these s
are described below.

~1! The direction of the shift of the cluster is determin
by looking at the position of the empty space of the b
box[0]. If pntmin[comp]-boxpos[comp].size/2, the shift that

FIG. 14. Two-dimensional space: Example of a cluster that
not been treated by the algorithm. The solution for this case sh
be a vertical shift~dotted! of the cluster of three boxes~grayed!.
th
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will be applied to cluster is to the left. Ifpntmax[comp]-
boxpos[comp],size/2, the shift will be to the right. In both
cases the box is also half empty.

~2! The examination on the componenttrans is done by
considering the distance between the corner of the boxes
form the cluster, dist5box[i-1]→boxpos[trans]-box[i]
→ boxpos[trans]. If dist is positive, the space for the bo
that will replace box[i] and box[i-1] is dist5size-dist
1 box[i]→spcrgt[trans]1box[i-1]→ spclft[trans]. Other-
wise, dist5size-dist1box[i-1] → spcrgt[trans]1box[i]
→spclft[trans]. If dist is greater thansize, there is enough
space for the new box@see Fig. 11~a!#.

~3! To finish the cluster, the following conditions must b
true: If the direction in which the cluster will be moved is
the right, box[0]→(pntmin[comp]-boxpos[comp])-box[i]→
(pntmax[comp]-boxpos[comp]).0. Otherwise, it isbox[i]
→(pntmin[comp]-boxpos[comp])-box[0]→ (pntmax[comp]-
boxpos[comp]).0.

In the two-dimensional space, moving a cluster can br
the conditions of a valid covering because it can produ
overlapping of boxes or can leave uncovered points. T
problem cannot be determined beforehand~see Fig. 12!, so
the previous values of the variables that define the cover,
boxes of the cluster, androw@ #, must all be saved. If some
problem occurs after the shifting of the cluster, the state
the variables before it can be restored.

To move this cluster ofN boxes, we will proceed accord
ing to the steps shown in Fig. 13.

Now, the probabilities assigned to the boxes can be de
mined. For instance, the sums( i pi lnmi and( im i lnmi can be
calculated for this size of box if the canonical method
applied in the multifractal set.

As already mentioned, we do not consider all clust
containing spurious boxes. In Fig. 14 we show a basic clu
that is not treated. The clusters that we have used are sim
to one-dimensional structures in a two-dimensional spa
There are other kinds of clusters that can be treated by
algorithm, but the clusters which we have considered
much more numerous, so the numerical results were no
compromised by this restriction.
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